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Boundary element analysis of driven cavity flow for low
and moderate Reynolds numbers

M. Aydin1 and R. T. Fenner*,2

Department of Mechanical Engineering, Imperial College, London, U.K.

SUMMARY

A boundary element method for steady two-dimensional low-to-moderate-Reynolds number flows of
incompressible fluids, using primitive variables, is presented. The velocity gradients in the Navier–Stokes
equations are evaluated using the alternatives of upwind and central finite difference approximations, and
derivatives of finite element shape functions. A direct iterative scheme is used to cope with the non-linear
character of the integral equations. In order to achieve convergence, an underrelaxation technique is
employed at relatively high Reynolds numbers. Driven cavity flow in a square domain is considered to
validate the proposed method by comparison with other published data. Copyright © 2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In the literature many computational methods are proposed for solving the Navier–Stokes
equations of viscous flow, and among them finite difference (FDM), finite volume (FVM) and
finite element methods (FEM) are well established. Although the boundary element method
(BEM) is firmly established for the solution of potential flow problems, applications to viscous
flow problems have only recently been explored. The main advantage of the boundary element
method is that only the boundary needs to be discretized for potential flow problems. Thus,
the calculation domain is reduced by one dimension. However, BEM loses its appeal somewhat
for viscous flows since the inclusion of the inertial terms of the Navier–Stokes equations
complicates the problem considerably. This makes the equations non-linear and requires
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discretization of the domain. Recently, a substantial amount of research has been directed to
solving the Navier–Stokes equations with BEM.

The integral equations and fundamental solutions for Stokes flow presented by Oseen [1] can
be considered as a first step in the BEM analysis of fluid flow. Later the fundamental solutions
were called Stokeslet [2]. The BEM solution of the Navier–Stokes equations was first
formulated in terms of vorticity and velocity by Wu et al. [3]. Mass and momentum
conservation equations are partitioned into their kinematic and kinetic parts in this technique.
The kinetic part is described by the non-linear vorticity transport equation, whereas the
kinematic one, which is governed by a Poisson equation, determines the velocity field from a
known vorticity field. Later, a vorticity–streamfunction integral approach was developed by
Onishi et al. [4]. These vorticity related formulations have the main advantages of eliminating
pressure from the solution procedure and satisfying continuity automatically. They are also
advantageous when applied to two-dimensional flows, due to involving fewer unknowns.
However, the extension to three dimensions is less attractive. This is due to the fact that
vorticity is no longer a scalar, and there is a total of six degrees of freedom at each node [5].
These formulations are not generally applicable since boundary conditions in terms of
vorticity, streamfunction and their normal derivatives will rarely be known. Further, they
require an iterative procedure even for Stokes flow [6].

The first boundary element treatment using primitive variables (pressure and velocity) was
used for steady Stokes flow past arbitrary objects [7]. Later, the analysis was extended to solve
the full Navier–Stokes steady flow equations by including non-linear terms in two-dimensional
BEM analysis [8]. In this work, a finite element approximation was chosen to evaluate the
velocity gradients within the flow. Constant surface elements were used at the boundary and
three-noded linear internal cells were utilized throughout the domain of interest, and solutions
were obtained at low Reynolds numbers. The same analysis was enhanced with a boundary
element representation of Oseen’s linearized equations for plane flow past a cylinder of
arbitrary cross-section [9]. However, solutions could not be obtained beyond a Reynolds
number of 1.0.

A new integral formulation with primitive variables, mainly based on Bush and Tanner’s
implementation, was proposed by incorporating linear boundary elements [10]. Hormander’s
method in the theory of partial differential equations was adopted to construct the fundamen-
tal solution. Two-dimensional cavity flow was solved to validate the analysis. However,
nothing was mentioned about the numerical implementation.

Since the BEM has been successfully applied in the field of stress analysis, BEM researchers
have utilized the analogy between Navier’s equations of elasticity and the penalty function
formulation of viscous incompressible fluids to solve flow problems. The evaluation of the
convective terms in the Navier–Stokes equations was investigated in the penalty function
formulation [11,12]. However, inserting a penalty parameter into the continuity equation
implies an artificial compressibility of the flow.

Recently, the divergence theorem has been applied to the non-linear convective volume
integral term, together with the free stream velocity concept being used to concentrate the
non-linear effects in the vicinity of the boundaries [13]. Although the application of the
divergence theorem to the convective term eliminates the requirement for computation of
interior derivatives, domain discretization is still needed. However, the formulation using FEM
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based derivatives (the present one) is less expensive than the divergence theorem formulation.
This is due to the fact that convective terms evaluated using FEM derivatives have fewer kernel
terms involved than the divergence theorem formulation, and less severe singularity in the kernel
[14]. It was also concluded that the successive substitution iterative method fails to converge
beyond Re=100.

The dual reciprocity method (DRM) has also been used, to transform the non-linear
convective volume integral term to boundary integrals [15]. The formulation was tested with the
case of steady flow inside a closed circular cylindrical container. It was reported that convergence
problems occurred for Reynolds number 32 and showed results up to Re=100. Later, an
indirect BEM with DRM was applied for three-dimensional solution of driven cavity flow [16].
The indirect formulation reduced computing time and the solutions were given for Re=100.

The penalty function technique with the Oseen fundamental solution has been employed for
steady viscous flows [17]. It was suggested that fundamental solutions for viscous flows that take
the convective nature of the flow into consideration are necessary for solutions of viscous flows
at high Reynolds numbers. Driven cavity flow problems were solved, but the algorithm failed
to capture the secondary vortices at the corners, and results were limited to Reynolds number
up to 1000. Recently, Grigoriev and Dargush [18] improved the penalty function formulation
employing hexagonal subregions and discretized the integral equation for each subregion. Such
a method is more akin to a FEM, but with an integral equation treatment for each subregion.
They solved the same problem with a non-uniform mesh of 1680 hexagonal subregions (each
made up of three quadrilateral cells) and were able to capture the secondary vortices and
obtained convergent results up to Re=5000.

A three-dimensional BEM was developed for Stokes flow in transient state[19]. Mixing flows
of Newtonian and viscoelastic fluids were considered in multiply connected moving domains.

More recently, Power and Mingo [20] enhanced the DRM formulation with a subdomain
decomposition approach in order to cope with higher Reynolds number flows. They tested the
formulation with the cases of driven cavity flow and backward facing step problems. They were
able to get convergent solutions of driven cavity flow up to Re=600 with 25 non-uniform square
subdomains.

In the present paper, a primitive variable formulation is used along with Stokes’ fundamental
solution. The non-linear terms are considered as pseudo-body forces in the boundary integral
equation and the convective terms are treated using finite difference schemes and derivatives of
finite element shape functions. The body terms are evaluated by direct iteration based on
successive substitutions of the updated velocity field. In order to achieve convergence at
relatively high Reynolds numbers, an accurate integration scheme with higher order domain cells
and an underrelaxation technique is employed. The well-known benchmark problem of
driven-cavity flow in a square domain is considered to validate the proposed method.

2. BOUNDARY INTEGRAL EQUATION

The boundary integral equation form of the governing equations for an incompressible fluid
together with traction and velocity boundary conditions over the fluid boundaries, is written
as follows [8]
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Cijuj(P)=�
�

�
( fj(Q)−aj(Q))uij*(P, Q) d�+

�
�

tj(Q)uij*(P, Q) d�−
�

�
uj(Q)t ij*(P, Q) d�

(1)

where tj, ui are the traction and velocity vectors respectively, � is the fluid density, fj are
arbitrary body forces, aj are the acceleration components, P and Q are source and field points
respectively. The aj convective term is given by

aj=uk

�uj

�xk

(2)

The Stokeslet fundamental solution in two dimensions is written in the following form:

uij*(P, Q)=
1

4��

�
− ln(r)�ij+

�r
�xi

�r
�xj

�
(3)

t ij*(P, Q)= −
1
�r
��r

�n
�r
�xi

�r
�xj

�
(4)

where r is the distance between P and Q, and n is the unit outward normal vector.
The boundary is represented with three-noded straight or curved isoparametric elements,

which use quadratic variation for both geometry and variables. The Cartesian co-ordinates
xi(�) of an arbitrary point of an element defined in terms of nodal co-ordinates xi

c and shape
functions can be calculated from

xi(�)=Nc(�)xi
c (5)

where � is the local intrinsic co-ordinate, which has its origin at the midpoint node and values
−1 and +1 at the end nodes, Nc are the shape functions of the isoparametric boundary
elements, c is the node number which ranges from 1 to 3, and i=1, 2. Each of the solution
variables, tractions ti and velocities ui, can then be represented in terms of the same shape
functions as follows:

ui(�)=Nc(�)ui
c

ti(�)=Nc(�)t i
c (6)

where ui
c and t i

c are the nodal values of velocity and traction respectively.
In addition to the boundary discretization, the domain must be discretized into cells. The

Cartesian co-ordinates xi(�1, �2) of an arbitrary point of a quadrilateral cell defined in terms
of nodal co-ordinates xi

c and shape functions can be calculated from

xi(�1, �2)=�
c

x i
cLc(�1, �2) (7)
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where the shape functions of the cell, Lc(�1, �2), are functions of intrinsic co-ordinates �1

and �2, which have their origin at the centre of the cell and values −1 and +1 at the
edges of the cell. The variation of the velocity field at any point of a cell can similarly be
written as

ui(�1, �2)=�
c

u i
cLc(�1, �2) (8)

where ui
c are the nodal velocities.

Let the boundary � and the domain � be represented by M isoparametric quadratic
boundary elements and N quadratic quadrilateral cells respectively. Substituting the para-
metric representations of geometry, velocity and traction into Equation (1), the boundary
integral equation may then be written in discretized form as

Cijuj(P)+ �
M

m=1

�
3

c=1

uj(Q)
� +1

−1

t ij*(P, Q)Nc(�)�J�(�)� d�

= �
M

m=1

�
3

c=1

tj(Q)
� +1

−1

uij*(P, Q)Nc(�)�J�(�)� d�

+ �
N

n=1

�
K

k=1

� +1

−1

� +1

−1

bj(Q)uij*(P, Q)Lk(�1, �2)�J�(�1, �2)� d�1 d�2 (9)

where bj(Q)= fj(Q)−aj(Q) is the total body force, k takes values from 1 to 8 (the nodes
of an internal cell). The Jacobian of boundary transformation from global to intrinsic
co-ordinate �, is J�(�)=d�/d�, and the Jacobian of domain transformation from the
global to the intrinsic co-ordinate system, �1 and �2, is J�(�1, �2)=��/�(�1, �2).

3. CONVECTIVE TERMS

3.1. Central difference scheme

The convective terms are considered as pseudo-body forces and treated using finite differ-
ence schemes. The convective terms are approximated by assigning a constant value of the
gradient to each cell. Using the usual notation of computational fluid dynamic (CFD)
methods, the centre point of the cell of interest is identified by P and its neighbours the
nodes to the west, east, north and south are identified by W, E, N and S respectively. The
distances between the nodes are identified similarly, for example the distance between the
nodes E and W is denoted by EW. The convective term components given in Equation (2)
can be written

aj=u1
P�uj

E−uj
W

EW
�

+u2
P�uj

N−uj
S

NS
�

(10)
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3.2. Upwind scheme

In the central finite difference scheme, convection is equally dependent upon both upstream
and downstream velocities. If it is assumed that the convection of the cell is received from
upstream and transmitted to the downstream, taking the convection contribution only from
the upstream direction is called upwind differencing

aj=u1
p�(uj

p−uj
W)/PW u1

p�0
(uj

E−uj
p)/EP u1

p�0
+u2

p� (uj
p−uj

S)/PS u2
p�0

(uj
N−uj

p)/NP u2
p�0

(11)

3.3. Deri�ati�es of finite element shape functions

The velocity gradients at any location can also be obtained by differentiating shape functions
of the relevant cell. Recalling the variation of the velocity field in the cell ui(�1, �2)=
�c u i

cLc(�1, �2), the velocity gradient can then be written in the form

�ui(�1, �2)
�xj

=�
c

u i
c �Lc(�1, �2)

�xj

(12)

where ui
c are the nodal velocities and i=1, 2. Substituting Equation (12) into the Equation (2),

the convective terms are obtained as

aj(�1, �2)=�
m

�
c

uk
mLm(�1, �2)uj

c �Lc(�1, �2)
�xk

(13)

where j=1, 2, and m ranges from 1 to 8, and the derivatives of shape functions with respect
to global co-ordinates �Lc(�1, �2)/�xk may be found from

�
�
�
�
�

�Lc(�1, �2)
�x1

�Lc(�1, �2)
�x2

�
�
�
�
�

= [J�(�1, �2)]−1

�
�
�
�
�

�Lc(�1, �2)
��1

�Lc(�1, �2)
��2

�
�
�
�
�

(14)

where [J�(�1, �2)]−1 is the inverse of the Jacobian J�(�1, �2), so that [J�(�1, �2)]−1 is of the
form

[J�(�1, �2)]−1=
�j11 j12

j21 j22

n
(15)

On combining Equations (13) and (15), the convective term aj(�1, �2) in unabridged notation
may be written as
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a2(�1, �2)=�
m

�
c

u1
mLm(�1, �2)u2

c� j11

�Lc(�1, �2)
��1

+ j12

�Lc(�1, �2)
��2

�
+�

m

�
c

u2
mLm(�1, �2)u2

c� j21

�Lc(�1, �2)
��1

+ j22

�Lc(�1, �2)
��2

�
(17)

4. INTEGRATION

The accuracy of the boundary element method essentially depends on the accuracy of
evaluation of integrals. The details of the integration schemes for Equation (9) are covered in
Aydin [21]. They are summarized here.

4.1. Boundary integrals

The integrals of kernel and shape function products can be evaluated depending on the
position of the load point P with respect to the boundary element over which the integrations
are carried out. When a load point P is outside the element, both kernels are non-singular,
with finite values within the integration region, and standard Gaussian quadrature is
employed.

When P and Q are in the same element but do not coincide, although uij*(P, Q) and t ij*(P, Q)
are both singular (because they contain terms of the order of ln(1/r) and 1/r respectively) the
shape function Nc(�) in the vicinity of P is of order r. The integrals are evaluated using
standard Gaussian quadrature.

When P and Q coincide, Nc(�) equals unity and both kernels contain singular terms, and
standard Gaussian quadrature can no longer be used. The kernel uij*(P, Q) requires special
treatment to deal with the ln(1/r) singularity, and logarithmic Gaussian quadrature is used. On
the other hand, there is no quadrature formula suitable for the kernel t ij*(P, Q). Besides,
calculation of the parameter Cij(P) is also needed. This is done by applying the boundary
integral equation to a problem which will result in a simple solution. For this purpose, a case
equivalent to rigid body motion in elastostatic problems [22] is considered: namely, constant
unit velocity in both directions for all nodes corresponds to zero tractions everywhere.

4.2. Domain integration

When the source point P is located outside the element to be integrated over, the domain
integration appearing in Equation (9) has no singularity. Therefore, standard Gaussian
quadrature is used. When the source point P is a node of the element to be integrated over,
the kernel uij*(P, Q) becomes singular as the distance r approaches zero. For constant
convective cells, the integration is performed analytically. For quadratic cells, the integration
scheme adopted here is based on the work by Lachat and Watson [23]. The latter was adopted
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by Tan and Fenner [24] for three-dimensional stress analysis of cracked components and
Ghaderi-Panah and Fenner [25] for contact problems. The basic idea behind the technique is
to transform the integration into new co-ordinates, such that the Jacobian of the transforma-
tion is small near the source point. Thus, singular behaviour of the kernel is moderated by the
small Jacobian. Standard Gaussian quadrature is then applied to each subcell.

5. SOLUTION PROCEDURE

After calculating integrals and applying boundary conditions, Equation (9) can be rearranged
in matrix–vector form as [26]

[A ][x ] k+1= [y ]+ [b ] k (18)

where [A ] is the resulting matrix of coefficients, [y ] is a known vector, [x ] represents the
unknown boundary values, and [b ] is a vector corresponding to body force terms. Here the
superscripts k and k+1 indicate the k and k+1 iterations of the predicted solutions
respectively. Once the boundary solution is obtained, the interior velocity field can be found
as

[� ] k+1= [H ][t ] k+1− [G ][u ] k+1+ [c ] k (19)

where [� ] is a vector representing the internal solutions, [t ] and [u ] are the boundary vectors of
traction and velocity, [H ] and [G ] are coefficient matrices and [c ] is the vector of non-linear
terms. To find the solution to the problem, [b ] and [c ] are set to zero as initial estimates, which
corresponds to Stokes flow. The relaxation scheme, for example for the boundary unknowns,
[x ], is written as follows

[x ]=� [x ]k+ (1−�)[x ]k−1 (20)

where [x ]k and [x ]k−1 are the values predicted in iterations k and k−1 respectively, and [x ] is
the value of the vector used to evaluate the vector [b ] for the next iteration. The same
relaxation scheme is applied to the internal solutions in each iteration until the desired
convergence is obtained. The relaxation parameter � varies between 0 and 1. When the
residuals are smaller than a certain tolerance �, the results are considered converged. The
convergence tolerance � is very small and usually in the range of 10−4–10−6.

6. NUMERICAL RESULTS

Driven cavity flow is strongly non-linear for high Reynolds number. It has been extensively
studied with all numerical methods for viscous flows and has become a benchmark problem in
the literature. In the BEM literature, Tosaka et al. [10] solved the case using primitive
variables. They used a fine mesh of 82 linear boundary elements and 840 linear triangular
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interior cells. However, results were given only for Re=100. Nothing was mentioned about
the position of the vortex centre and the existence of secondary vortices at the corners.

Kitagawa et al. [11] used a BEM with a penalty function formulation to solve this problem.
They used a non-uniform mesh of 160 linear boundary elements and 157 rectangular constant
interior cells. They reported that at Re=400, the successive substitution iterative algorithm
(direct iteration) was convergent for the upwind finite difference scheme but produced different
results from those published in the literature. In the case of central differences, the iteration
cycle was unstable and not convergent [11,12]. Again, nothing was mentioned about the
location of the vortex centre and capturing the secondary vortices at the corners.

Dargush and Banerjee [13] solved the problem with a non-uniform mesh of 324 quadratic
domain cells and showed results up to Re=1000. It was reported that the successive
substitution iterative algorithm failed to converge beyond Re=100. Beyond that range the use
of a Newton–Raphson type algorithm was imperative [13].

Grigoriev and Fafurin [17] presented a BEM solution using the penalty function technique
and the Oseen fundamental solution for driven cavity flow. Results were presented for a
non-uniform mesh with 324 quadratic interior cells. They reported that their algorithm failed
to capture the secondary vortices at the corners. However, in a recent paper, Grigoriev and
Dargush [18] improved the penalty function formulation employing hexagonal subregions and
discretized the integral equation for each subregion as in FEM. They solved the same problem
with a non-uniform and much refined mesh of 5040 quadrilateral cells and were able to
capture the secondary vortices and obtained convergent results of up to Re=5000.

Driven cavity flow is defined as steady laminar incompressible flow in a unit square cavity
whose top wall moves with constant velocity in the plane of the cavity cross section. Therefore,
the flow movement inside the cavity is induced by the top wall of the cavity. The fluid
velocities on the left, right and bottom sides are fixed at zero in both directions, while a
uniform non-zero velocity is along the top wall as boundary conditions.

The boundary of the problem is uniformly discretized for Stokes flow using a mesh with 40
boundary elements. The works of Burggraf [27], and Karaeorghis et al. [28] are used to assess
the horizontal velocity results along the vertical centre line of the cavity of the present work.
They are all plotted in Figure 1. The finite difference method was used with a 1024 node grid
by Burggraf [27], employing the vorticity–streamfunction approach. The indirect boundary
element method was adopted to obtain the results iteratively in the work of Karaeorghis et al.
[28]. Only half of the cavity was taken as the solution domain, with 136 nodes. All results agree
well with one another, as well as with the present solutions, indicating that for Re=0, the
coarse mesh employed here is adequate.

Checking bulk continuity in CFD is important for an overall quantitative sense of the
solution accuracy. This comparison is done for both the u1 and u2 components of velocity.
Velocity profiles for the u1 component along the vertical line and the u2 component along the
horizontal line, both passing through the geometric centre of the cavity, are considered to
calculate volumetric flow rates, Q. Integration of the velocity profile over these sections should
result in Q=0 for both directions. Convergence of the obtained results to Q=0 is tested for
a number of uniform meshes. Integrations to calculate the volumetric rates are performed by
using Simpson’s rule. Table I lists the calculated numerical values of the volumetric flow rates
corresponding to the velocity profiles for different numbers of boundary elements. These
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Figure 1. Velocity profile on vertical centre line of the driven cavity for Re=0.

Table I. Volumetric flow rates through geometric centre of the cavity for Re=0.

Volumetric flow rates 16 elements 32 elements 64 elements 80 elements

0.058 0.029 0.015Q1=� u1 dx2/Qc 0.012

Q2=� u2 dx1/Qc −0.039 −0.019 −0.009 −0.007

values are divided by characteristic flow rate, Qc, which is the horizontal rate that would occur
in the absence of the side walls (linear velocity profile in the vertical direction), to help quantify
the errors.

As finer meshes are used, volumetric flow rates converge to zero for both directions of flow.
From the table, Q1 has positive values indicating that there is a net flow in the positive
(horizontal) x1 direction, whereas negative Q2 implies a net flow in the negative (vertical)
direction of x2.

The problem for finite Reynolds number flow is solved using constant interior cells with
both the upwind and central difference approaches, and quadratic interior cells with deriva-
tives of finite element shape functions. Table II documents the characteristics of the uniform
meshes of quadratic interior cells. The only difference between the constant cell meshes and the
quadratic ones is that there are more internal nodes used in constant cell meshes, whereas the
other characteristics remain the same. For constant cell meshes, there are 40 internal nodes
used in Mesh 1, 176 in Mesh 2 and 736 in Mesh 3. The problem is first discretized using Mesh
1 with constant cells to obtain the solution at Re=10. Convergence occurs after five iterations
for both schemes. The results obtained for both finite difference schemes are compared with
FEM results [29], as shown in Figure 2. A fine mesh with 16 nodes along the vertical line
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Table II. Meshes for driven cavity flow.

No. of boundary No. of internal No. of cells
nodeselements

16 33 16Mesh 1
32 161Mesh 2 64
64 705Mesh 3 256
80 1121Mesh 4 400

Figure 2. u1-velocity profile along vertical line through geometric centre for Re=10.

through the centre of the cavity and the penalty function approach were used in this FEM
work. The present algorithm with the upwind scheme for this mesh fails to converge at
Re=40, whereas the one using central differences continues to converge up to Re=100.

Meshes 1–3 are all used for Re=100, for which many results are available in the literature.
The results are plotted with the finite difference solutions [24,27] in Figure 3. Ghia et al. [30]
used a very fine uniform grid with 129×129 points to analyse the case at Re=100. They
represented the governing equations in terms of streamfunction and vorticity parameters. The
discretization was performed with central differences, while the convective terms were repre-
sented with the upwind scheme. As shown in Figure 3(a), although all results converge for the
published FDM solutions with the refined meshes employed, the best agreement between
FDM and the present solutions are obtained with quadratic Mesh 3, indicating the importance
of the mesh. The same observations can be made for the u2 profile along the horizontal line
through the geometric centre in Figure 3(b). Nevertheless, the present results with the upwind
scheme offer slightly different effects compared to the others, which confirm the observations
of Kitagawa [12]. However, convergence difficulties and fluctuations in the solution with this
scheme appear even when using Mesh 2. Using the present algorithm with central finite
differences, convergent results are obtained up to the limit of Re=225 (relaxation parameter
�=0.2) for this particular mesh, which conflicts with the observations of Kitagawa [12].
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Figure 3. Velocity profile for Re=100: (a) u1 along vertical line through geometric centre; (b) u2 along
horizontal line through geometric centre.

The u1 profile results along the vertical line through the geometric centre for Re=400 are
compared with the finite difference solutions [30] and also those of Agarwal [31], who used a
121×121 uniform grid with a high order FDM upwind scheme. This comparison is shown in
Figure 4(a). Results for u2-velocity profiles along x1 through the geometric centre are plotted
in Figure 4(b). The present results converge to the published FDM solutions [30] with the
refined meshes employed.

The results for Re=1000 are plotted with those of Tosaka [32], Thomasset [30] and,
Nallasamy and Prasad [34] in Figure 5. Tosaka [32] formulated the boundary integral
equations with primitive variables and constructed the fundamental solution by adopting
Hormander’s method. He used a 23×25 non-uniform mesh of linear boundary elements and
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Figure 4. Velocity profile for Re=400: (a) u1 along vertical line through geometric centre; (b) u2 along
horizontal line through geometric centre.

linear triangular cells to discretize the problem domain. Thomasset [33] used a vorticity–
velocity upwind FEM method together with a 12×12 element mesh. Nallasamy and Prasad
[34] again used an upwind FEM method. They employed a mesh with 50×50 elements.

Another important way of assessing the results is to compare the positions of the main
vortex centre. This is illustrated in Table III. The present results for Re=0 agree with those
reported in the works of Gupta and Manohar [35], and Rodriguez-Prada et al. [5]. Gupta and
Manohar [35] employed a FDM with streamfunction–vorticity. Rodriguez-Prada et al. [5] used
a BEM and streamfunction–vorticity to solve the case directly without iterations. They used
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Figure 5. Velocity profile for Re=1000: (a) u1 along vertical line through geometric centre; (b) u2 along
horizontal line through geometric centre.

a mesh with 64 boundary nodes. The vortex centre moves as the Reynolds number increases,
which was described earlier by Burggraf [27]. Present predictions for the vortex centre location
are compared with some available data published in the literature. For Re=100, the results
are also compared with the experimental ones [36].

The results obtained in terms of a velocity vector field for Re=1000 are given in Figure 6.
Magnified views of the secondary vortices at the bottom corners are shown in Figure 7.
Although the secondary vortex at the right hand corner can be clearly seen, the centre of the
vortex at the left hand corner is close to the bottom boundary and not seen well. A finer mesh
at this corner may be used in order to resolve the vortex here. As seen from Figure 6, the
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Table III. Comparisons of the main vortex centre location (x1, x2) in driven cavity flow.

Re=0 Re=100 Re=400Studies by Re=1000

(0.500, 0.750) (0.63, 0.75) —Gupta and Manohar [35] —
(0.500, 0.750) (0.62, 0.75)Rodriguez-Prada et al. [5] — —
(0.500, 0.760) (0.625, 0.750) (0.560, 0.615)Burggraf [27] —
— (0.6172, 0.7344)Ghia et al. [30] (0.5547, 0.6055) (0.5313, 0.5625)
—Grigoriev and Fafurin [17] (0.610, 0.730) (0.555, 0.610) (0.545, 0.575)
— —Matsumoto and Daiguji [37] — (0.530, 0.564)
— (0.62, 0.74) —Mills [36] —
— (0.6167, 0.742)Schrieber and Keller [38] — (0.553, 0.650)
(0.500, 0.750)Present (0.625, 0.750) (0.556, 0.611) (0.5312, 0.5625)

Figure 6. Velocity vectors for Re=1000.

method is also able to sense the existence of another vortex at the left top corner, which is not
clear. This is due to the fact that this vortex only becomes really apparent after Re=3000 [30].

Tables IV and V list the calculated numerical values of the volumetric flow rates in two
directions for different Reynolds numbers. From Table IV, as Re is increased, the volumetric
flow rate increases, indicating that the error increases as well. There is one exception with
Mesh 3 for Re=1000. For Re=100 and 400, as finer meshes are used, the volumetric flow
rate converges to zero. From Table V, Q2 has negative values indicating that there is a net flow

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 45–64



M. AYDIN AND R. T. FENNER60

Figure 7. Velocity vectors at the bottom left hand and right hand corners for Re=1000.

in the negative x2 direction. For Re=100 and 400, as finer meshes are employed, the
volumetric flow rate converges to zero. This is valid with Meshes 1 and 2 for Re=1000.
However, there is no improvement between Meshes 3 and 4 at this particular Re number.
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Table IV. Volumetric flow rate Q1=� u1 dx2/Qc through geometric centre of
the cavity.

Re=100 Re=400 Re=1000

0.0636 0.0777 0.1082Mesh 1
0.0316 0.0367Mesh 2 0.0433

Mesh 3 0.0156 0.0176 0.0001
Mesh 4 0.0124 0.0139 0.0163

Table V. Volumetric flow rate Q2=� u2 dx1/Qc through geometric centre of
the cavity.

Re=100 Re=400 Re=1000

−0.0318 −0.0155Mesh 1 0.0130
−0.0167 −0.0099Mesh 2 −0.0017
−0.0088 −0.0063Mesh 3 −0.0025
−0.0071 −0.0054 −0.0026Mesh 4

Figure 8. Effect of Reynolds number on convergence (�=0.08).

Information about solution parameters such as the number of iterations and relaxation
factor hardly appear in the BEM literature. For the purposes of illustration, the effects of Re
and relaxation factor � on the solution are shown in Figures 8 and 9. At low Re, the solution
converges more rapidly and monotonically. However, the solution oscillates with larger
amplitudes and takes more iterations to achieve convergence when Re is increased. Note that
setting the underrelaxation factor to the correct value is very important. For this purpose,
relaxation factors �=0.5, 0.25 and 0.1 are tested. This may be seen in Figure 9, a study which
is carried out with Mesh 2 at Re=300. For �=0.5, an immediate divergence occurs, whereas
for �=0.25 the solution oscillates with larger amplitudes and diverges. However, the solution
converges uniformly for �=0.1.
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Figure 9. Effect of relaxation factor � on convergence (Re=300, Mesh 2).

Although convergence is obtained for Re=1200 with Mesh 4, at this Reynolds number the
solution exhibits what is probably incorrect behaviour. In terms of Reynolds number, this may
be a limitation on the present algorithm or a finer mesh may be required to obtain correct
solutions at higher Re.

7. CONCLUSIONS

This work presents an accurate and general BEM formulation which was successfully applied
to driven cavity flows from zero to moderate Reynolds number conditions.

In the literature, a penalty function is used to enforce the incompressibility constraint in
order to obtain accurate BEM solutions [11,12]. However, in this work, it is shown that the
penalty function does not have to be applied to the BEM as long as incompressible
fundamental solutions (Stokeslet) are used.

To the best of the authors’ knowledge, in BEM formulations with primitive variables, the
convective terms have not been treated with central and upwind finite difference schemes in the
literature. It has been shown that convective terms approximated with these schemes are
appropriate for flows at low to medium Reynolds numbers. It was also shown that, under the
same conditions, the present algorithm with central finite differences showed a better conver-
gence than the one with the upwind scheme, which conflicts with the observations made for
penalty function formulations in the literature [11].

It has also been reported that the successive substitution iterative algorithm is appropriate
only for low Reynolds number flows and that it fails to converge for flows beyond this range.
When high Reynolds number flows are tackled, the use of a Newton–Raphson type algorithm
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was imperative for high Reynolds numbers [13,39]. The present research revealed that this type
of algorithm is not necessary as long as an accurate integration scheme with higher order
domain cells and an underrelaxation technique are used. The solution interval with the direct
iteration algorithm was expanded to cover higher Reynolds number flows as well. It was also
noted that setting the underrelaxation factor to the correct value is very important to achieve
convergence at higher Reynolds numbers.

Bulk continuity is an important aspect of CFD, which is useful to check. This offers an
overall quantitative sense of the solution accuracy. This check seems to have been ignored in
the BEM literature, but was used in the current work.

The subject of accuracy is most important for a numerical method. The present BEM
formulation produces accurate solutions for both Stokes and finite Reynolds number flows.
Detecting the vortex centre of driven cavity flow and resolving vortices at the corners of the
cavity were good examples of the accuracy and sensitivity of the present formulation.
However, in the BEM literature, either nothing was mentioned about the vortex centre of the
driven cavity flow and the secondary vortices at the corners [10–12] or it was reported that the
algorithm with the BEM failed to capture the secondary vortices at the corners [17].

Although the present formulation converged for Reynolds numbers larger than 1000, the
solution lost its reliability. Therefore, this is the effective Reynolds number limit of the method.
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